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Abstract This paper discusses the application of genetic algorithms to the construction of rule-based models,
Water quality time series will be explored to extract predictive rules for algal biooms in freshwater Jakes. The
liypertrophic Jupanese lake Kasumigaura is used to demonstrate the technigue.

1 INTRODUCTION

Pattern recogaition m water quality time series by
machine learning algorithis such as artificial neu-
ral networks and genetic algorithms has been iden-
tified as a promising approach to predict future and
understand past behaviour of freshwater ecosysiems
(Recknagel {1997} Recknagel and Wilson [1999];
Whigham and Recknagel [1999]). Water guali-
ty data have been systematically monitored and s-
tored for many freshwater lakes worldwide since the
1980’s.  Current machine learning techniques are
supported by high speed and large memory comput-
ers creating new opportunities (o explore this data
for predictive modeling of freshwater quality.
Harmful blooms of toxic blue-green algae can

cause. serious management - problem -in-Jakes- and -

drinking water reservoirs. Predictive models of al-
gai blooms can provide decision support on preven-
tative and operational control of these events.

are used to develop a predictive rule set from water
quality time series for the prediction and explana-
tion of algal blooms in the Japanese lake Kasumi-
gaura. Lake Kasumigaura is sitgated 60 kms north
east of Tokyo and is Japan's second fargest izke.
The fake is shaliow, with a maximum depth of 7
meters and a mean depth of 4 meters. Because of
the fakes shallowness and strong mixing of the lake
water by winds, persistent stratification of the water
body does nat occur. The lake has been monitored
for more than 20 years at different sampling sites
providing a long record of water quality data. Data
from a central sampling site which is known for re-
current harmful algal blooms have been chosen for
modelling in this paper.
Genetic algorithms are robust optimisation proce-
dures which have been widely utifised in areas such
-as.engineering optimisation and design, forecasting,
image recognition and functional optimisation. Ge-
netic algorithms are modeled off natural evolution,
and require no information about the nature of the
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In the context of this paper genetic algorithms

search space. Evolutionary techniques are also ap-
plied 1o a wide variety of problem represeniations,
recently including rule sets for knowledge discovery
{Bobbin and Yao [19997).

Genetic algorithms allow the creation of relation-
al models for ecological applications. They can be
applied for medeling with a prioti hypothesised re-
lational rules or ad hoc constructed rules. In this
way a structure which has desirable properties can
e chosen for evelution.

By combining function optimisation and rule set
generation a hybrid genetic algorithm approach has
been applied for modeling of algal bloom events
in Lake Kasumigaura. Mining the available water
quality data Yor useful patterns and regularities of-
fers the chance for a deeper understanding of the

-.problem.domain.and the possibility. of useful new

relationships being discovered inductively. The evo-
lutionary approach proposed in this paper addresses
the problem of elucidation and prediction from an

problem domain.

2 EvVOLVING MODELS OF AL-
GAL ABUNDANCE

Evolutionary methods in machine learning use a for-
malised statement of evolution to evolve solution-
s to a problem of interest. The term evolutionary
computation encompasses several different com-
puting paradigms including self-adapiive optimi-
sation approaches (evofutionary strategies, Schwe-
fel [1994], and evolutionary programming, Fogel
[1995]). These approaches concentrate on the phe-
notypic aspects of evolution in contrast with ge-
netic algorithms, Holland [1975], and genetic pro-
gramming, Koza [1992], which use a more genetic
based analogy. This paper utilizes a hybrid algo-
rithm based on the evolutionary strategies and evo-
lutionary programiing paradigms to optimize pa-
rameters assoctated with coevalved rule sets.

‘inductive machine tearning method in an ecological
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Figure 1: The main components of the evolutionary process for model creation

Finding an optimal model for prediction from a
data set is a difficuit problem. Most studies con-
centrate on predictive accuracy of models and the
training and preprocessing required to achieve good
results.
acquiring knowledge from the learning algorithm.
In order to predict new data the model must have

- learned some-knowledge of the. patterns. contained ...

in the data. The representation of this knowledge is
not generally available for examination. Evolution-
ary methods can be applied to a range of problem

“representations, allowing the evolution of model-
s with more transparent knowledge representations.
This allows model predictions and model behaviour
to be understood. It may also be of use in further
understanding the patterns, regularities and relation-
ships which exist and drive a certain phenomenon,
such as algal abundance in Kasumigaura.

2.1 Structure of the Evolutionary Pro-
cess

The structure of the evolutionary algorithm is shown
in figure 1. For the experiments presented in this
paper the popualation size was set to 500 (A=500)
and the ratic of parent to children was set to %
{(pt = 100}. Each model is constructed from a rule
set and a parameter vector. The parameter vector is
evolved according to the paradigms of evolutionary
strategies, Schwefel [1994], and evolutionary pro-
gramming, Fogel [1995].

A genetic algorithm is used o avtomatically find
a rule stracture associated with the parameters for
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This approach neglects the possibility of
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Figure 2: Structure of an evolved rule set

the prediction of the algal time series data. The ap-
proach concentrates on using muiation and selection
as the principal search operators. Although present,
the crossover operation plays a secondary role in the
search.

The selecticn procedure is a truncation method
referred to as {p, A) selection (Schwefel [1994])
From a popuiation of A individuals the best 1 are
selected as the parents to the next generation. Each
parent produces i} chiidren which form the nex-
t generation. This technique has no elitism, the
best individual may be lost to the population. This
method has empirically been found to promote suc-
cesstul self-adaptation.

A rule set is structured as a series of if-then rules,



Each rule can have an exception, allowing a further
test(s) and the possibility of having a selected rules
prediction modified. The rule structure 18 shown in
figure 2. The value of all the subscripted variables
are linked to the numbers in the parameter array.
The possible values of VAR, depend upon the at-
tributes in the input set being used. The A, vari-
able is arburarily limited to 6 possible values, as
this was sufficient for the algal prediction problem,
Bach VAR; has its range (RANGE,;) divided into 3
regions for comparisons. A rule in figure 2 might
have VAR, set to water temperature, RANGE;, set to
range |, and A; set to prediction 2. This symbolic
knowledge 15 realised by values held i the param-
eter vector. The parameter vector holds the lower
and upper bounds for RANGE; and the predicted
chiorophylia measurement for A,

The three ranges allowed for each variable
is reduced to two parameters by considering
the three ranges to be (MIN py), {(p1,p) and
(pa2, MAX), where MIN and MAX are small-
er and larger than any possible value respec-
tively (ie 0 and oo},  The parameter vector
(P11, p1zs Pars - -. A1, Ag, o0 consists of the val-
ues

piw where & {1,... Tuputs}
and ke {12}

and the values A; where !l € {1,... 6}

A rale s o direct comparison between an input
variable and a range of values. If the input variable’s
{VAR;) value falls within the range (RANGE;) cod-

Téd on'the rule then the action (A7) codéd onthe rafe”

is performed. If a rule is true then its exception
list 15 checked. If 1t 15 not then its ‘otherwise’ rule
is checked. In this way the rule set is recursively
parsed, with the last true rule having its prediction
used as the output of the mode! on the given input
example.

The evolutionary process is self-adaptive. There
is a mutation vector o which determines the size of
the mutaticn step performed on a model, and which
is co-evolved with the model. The parameter vector
x 15 updated according to

F =i N6 (0
The strategy, or mutation vector ¢ is updated ac-
cording to

ap = -expl{t - N0 1)+ 7 N0, 1)) (D)

where 7 oc (/2/n) " and 7 o (v/2n)7 N(0,1)
in equation 2 is a normally distributed random num-
ber with standard deviation one and expectation ze-

-ro.. N;(0, 1} means the random. variable 15 sampled. -

anew for each value of 4. a; denotes the ¢ th com-
ponent of & The constant of proportionality for v
and 7' can be interpreted as a learning rate {{Bick,

1996,page 721}, and althongh it is often set to 1, for
the current experiments a constant of .3 was found
most useful. Recombination and covariance meth-
ods were not used in the self-adaptation scheme.

The rule set 15 evolved by a set of mutation oper-
ators acting on the discrete rule tree structure, With
probabilities determined by a probability vector up-
dated by equation 2 one or more of the mutation
operators listed in figure 1 can occur. The addition
and deletion mutations add or delete a random rule
from the tree. The modification mutation modifies
the chlorophylia prediction that a rule codes. The
structural mutation changes the order that rules are
parsed in the rule tree, and the crossover operator
performs @ crossover operation between member-
s of the population. Details of operator functions
and performance are discussed in Bobbin and Yao
(19997,

2.2 Model Evalunation

A root mean sguare (RMS) error formula is used
to evaluate the modeis produced by the evolution-
ary process. The fitness associated with the model-
5 is calculated from a modified RMS error method
to concentrate the evolutionary search on models
which correctly predict higher levels of chlorophyl-
la. The fitness function used was

{Zpred =Lnetual)
Examples

Fii% —
A (Fpred —Tactunl ) c L "
\/ Examples W 2peed < Tactual

it Epred > Tactual

f o=

the input set. This fitness function biases the fitness
in favour of over prediction. All numbers reported
in-this paper-are standard RMS evaluations of the
models.

3 EXPERIMENTAL STUDIES

The evolutionary algorithm is used to extract mod-
els using a variety of different characteristics about
the state of the lake. The different input sets are
summarized in fable L

The evolutionary process made 20 independen-
t runs with each of the input sets in table | with a
population size of 300 and for 150 generations. The
quartile and median values are listed in table 2. Re-
salts from input set 1, 2, 4 and 6 can be considered
equivalent in the current experimentai set up. Secchi
depth, an indicator for water transparency, is com-
mon to ali runs which produce resuits with a median
error of less than 40. This is most probably due to

- the indication of & clear water stage by high secchi-

depths. 'This is indicative of low algal abundance
{chlorophylla levels) in winger or after high grazing
pressure from an abundant zooplankton population.
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Figure 3: Rule Set

| Input Set | Lake Data | [ Input Set | ist Quartile | Median | 3rd Quartile |
| Water Temperature, Secchi Depth, 1 369123 37.8305 40.6746
POy, NOz, NOg : POy ratio, Dis- 2 37.1431 37.6297 39.1522
solved Oxygen, ph, Solar Radiation 3 42,4198 437651 45.57%4
2 Whaier Temperature, Secchi Depth, 4 37.0226 37.9379 387717
POy and NO; concentration 5 41,1755 42.2246 42 9599
3 Water Temperature, Secchi Depth, & 37.3972 37.8433 304419

NOy : POy ratio

PO, and NOg concentration, NGs
POy ratio

5 Water Temperature, Solar Radia-
tion, PO, and NO, concentration

) Water Temperature, Secchi Depth,
Solar Radiation, PG, and NOjy con-
centration

4L Water, Temperatare, Secchi Depth, 1

Table 1: Table of input parameters for the lake mod-
el

3.1 A model from input set 2

For input set 2 consisting of Temperaturs, Secchi
Depth, Phosphate and Nitrate concentrations a typi-
cal ran of the genetic algorithm discovered the mod-
el in figure 4. The mean square error on the testing
set of this model is 37.80, and the training set RM-
S is 28.08, This model used the rule set shown in
faued, .

The model firstly uses the secchi depth to classify
low algal abundance. This rule is mostly true over
the low algal winter months. The model uses ni-
trate and phosphate concentrations to indicate algal
consumptior of available nutrients. It is interesting

that the level of nitrate is used to indicate the most
severe blooms. For Kasumigaura, the model dis-
covered that large algal abundance is well correlat-
ed with low nitrate levels over the summer months.
This may be explained by the fact that blue-green
algae, which are dominating in summer, are able to
fix nitrogen from the atmosphere for photosynthesis
and do rot depend on dissolved nitrogen in the wa-
ter. If phosphate is also low then the aigal cell coun-
t is high {96 mg/t). This indicates that the largest
blooms (in the order of 140 mg/1) occur when algae
have consumed most of the available free nitrogen
(nitrate levels are low), but phosphate levels are not
near to exhaustion,

This model does not, however, succeed in pre-
dicting all of the peaks in algal abundance. The high
algal abundance in early 1986 and alse in the train-
ing set are not predicted by this model. The average
prediction of 20 independent runs using input set 2

_shows that the average model also misses these algal

abundance peaks. This suggests that either the driv-
ing forces for these peak abundances are not present
in the inpuf set, or that the concepts required fo pre-
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Figure 4: Training and testing output for input set 2

dict the algal abundance at this time cannot be rep-
resented or discovered by the learning algorithm.

3.2 Using all available inputs

“Inputset | contained all the avaitable input param=

eters. Results from using this set on the unseen da-
ta were equal o the best results achieved, which
dermonstrates the evelution’s ability to sort through
redundant information and provide equivalent mod-
els. Since more information is available to the algo-
rithm there is an increased chanece of over-training.
This did not cccur, and the use of input set 1 al-
lows us to compare different outputs from different-
ly structured models which nevertheless achieve e-
quivalent root mean square errors.

The different model structures produce qualita-
tively different predictions. In particular, the timing
of high atgal abundance are picked ap by different
madel structures differently. The model detailed in
figure 5 produced the prediction on the unseen test-
ing years of 1980 and 1993 shown in figure 6. This
model had a very good root mean square error of
35.76, and was able to pick up the algal abundance
indicated in figure 6. This particular bloom was not
predicted successfuily by most other evolved mod-

els. The model in figure 5 used rule [5] to catego-

rize this peak. That is, it was a time of low nutri- .

ent jevels and the pH level was less than .16, Had
the lake been in a more alkaline state the predic-
tion would have been for an extremely high level
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Figure 6: Training and testing output for input set ]

of chiorophyila (174mg/l). This rule teils us that
the peak chiorophyila level occurred at a ime when
the nutrient levels were fow and pH was less than
9.16. It could be concluded that higher chlorophylia

_at approximately 174 mg/l would occur at pH levels

above @.10. Nevertheless, the validity of this con-
clusion is unconfirmed.

4 CONCLUSION

in situ time series hold vnique information about e-
cosystern processes and behaviour. Inductive mod-
eling techniques can be used to explore this infor-
mation. Machine learning techniques offer a new
quatity of inductive modeling by extracting not only
seasonal and annual patterns, but related connectiv-
ity betwean key variables as weil,

Preliminary results in this paper show that in par-
ticular genetic algorithms can be used to extract and
develop rules from water quality time series, that
can be used for prediction and elucidation of timing
and magnitudes of algal bloom events, Hven though
test results look already promising, the validity of
some rules at this stage is yet to be confirmed.

Further efforts will be made to elucidate and pre-
dict chlorophylia by means of generated rules as an. .
indication of algal blooms, before the abundance
and succession of algal species will become the sub-
ject of rule-based modeling by genetic algorithms.
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IS 44.49 iIig’/E 15 59.95 111{?/1

:

(3] IFF NITRATE
£ [0, 360} mg/!
THEN CHLOROPHYLLA
IS 100.7 mg/l

IF PHOSPHATE
35,168] mg/l
THEN CHLOBOPHX LLA
IS 174.4 mg/l

[5] IF pH
£ 10,9.16]
THEN CHLOROPHYLLA
IS 112.1 mg/l

——

[1] IF SECCHI DEPTH {2] I pH

€ (43, MAX] em € {9.16, 10.34]
THEN CHLOROPHYLLA (| THEN CHLOROPHYLLA
] }

é

([(i] I DISSOLVED OXYGE u\ 71 IF pH )
€ [0, 18] mg/i € [0,9.16]
THEN CHLOROPHYLLA THEN CHLOROPHYLLA
IS5 59.95 mg/l IS5 112.1 mg/l
Figure 5: Rule Set 2
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